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Granular shear flows at the elastic limit
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This paper describes computer simulation studies of granular materials under dense
conditions where particles are in persistent contact with their neighbours and the
elasticity of the material becomes an important rheological parameter. There are two
regimes at this limit, one for which the stresses scale with both elastic and inertial
properties (called the elastic–inertial regime), and a non-inertial quasi-static regime in
which the stresses scale purely elastically (elastic–quasi-static). In these elastic regimes,
the forces are generated by internal force chains. Reducing the concentration slightly
causes a transition from an elastic to a purely inertial behaviour. This transition
occurs so abruptly that a 2% concentration reduction can be accompanied by nearly
three orders of magnitude of stress reduction. This indicates that granular flows near
this limit are prone to instabilities such as those commonly observed in shear cells.
Unexpectedly, there is no path between inertial (rapid) flow and quasi-static flow by
varying the shear rate at a fixed concentration; only by reducing the concentration
can one cause a transition from quasi-static to inertial flow. The solid concentrations
at which this transition occurs as well as the magnitude of the stresses in the elastic
regimes are strong functions of the particle surface friction, because the surface
friction strongly affects the strength of the force chains. A parametric analysis of the
elastic regime generated flowmaps showing the various regimes that might be realized
in practice. Many common materials such as sand require such large shear rates to
reach the elastic–inertial regime that it is unattainable for all practical purposes; such
materials will demonstrate either an elastic–quasi-static behaviour or a pure inertial
behaviour depending on the concentration – with many orders of magnitude of stress
change between them. Finally, the effects of nonlinear contacts are investigated and
an appropriate scaling is proposed that accounts for the nonlinear behaviour in the
elastic–quasi-static regime.

1. Introduction
The history of granular flow modelling begins with quasi-static flow theory (see

Jackson 1983). As the name suggests these theories deal with slowly moving flows that
demonstrate no velocity dependence and are usually formulated by incorporating a
Coulomb failure criterion into plasticity models. Implicit in almost all of these models
is that the flowing material is always at the point of incipient yield, with a ratio of
maximum shear to normal stress equal to the tangent of the internal angle of friction
of the material. In the last 20 years or so, there has been a great deal of development
at the other end of the spectrum, in the slightly misnamed field of rapid granular
flows, which would more accurately be called rapidly shearing or collisional granular
flows (see the review by Campbell 1990). These theories took the point of view that
in highly excited systems, the particles are reminiscent of molecules in the kinetic
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theory of gases and could be analysed utilizing formalisms devised for kinetic theory.
In such systems as in their molecular counterparts, transport rates are controlled
by a ‘granular temperature’ which is a measure of the kinetic energy contained in
the random motion of the individual particles. Rapid flow ideas have been shown
to account for measurements of heat (Wang & Campbell 1992) mass (Savage &
Dai 1993; Campbell 1997a) and momentum transfer (e.g. Lun et al. 1984; Savage
& Sayed 1984; Jenkins & Richman 1985; Campbell 1989; Wang & Campbell 1992;
Goldshtein & Shapiro 1995; Goldhirsch & Tan 1996). The science of rapid granular
flows originated with the dense suspension experiments of Bagnold (1954), but recently
Hunt et al. (2002) have shown that Bagnold’s stress measurements are probably the
results of secondary flows in his apparatus and unlikely to be related to the behaviour
of dry granular materials.

However, it eventually became apparent that very few granular flows outside the
laboratory were actually rapid granular flows. Strictly, rapid flows allow no enduring
contacts between particles as their underlying kinetic theory framework is based on
an implicit assumption of instantaneous binary collisions. (Although Hwang & Hutter
1995 have made a first-order attempt to incorporate finite collision times into rapid
flow rheology.) Yet it is common experience that particles remain in contact for long
periods of time even during flow. Under Earth’s gravity, very large shear rates are
required to maintain a rapid granular flow as the granular temperature must be large
enough to generate sufficient dispersive pressure to support the weight of the material.
In the shear cell studies that lead to Wang & Campbell (1992), it was difficult to
maintain rapid flows below 70 s−1 of shear rate – an indication of the large shear rates
required.

The current study was engendered by three previous studies that the author
participated in. The first of these concerned the phase change between fluid-like
and solid-like behaviour of granular materials (Zhang & Campbell 1992; Campbell
& Zhang 1992; Campbell 1993), which indicated that this transition could not be
described in terms of rapid granular flow ideas (as first proposed by Jenkins & Askari
1991), but instead demonstrated a quasi-static yield behaviour. However, later studies
on hoppers (Potapov & Campbell 1996), which are clearly not rapid granular flows,
indicated that the generally accepted assumption of quasi-static yield occurring at
the internal angle of friction of the material could not explain the stress state within
the hopper. In particular, standard quasi-static flow analyses assume that the ratio
of maximum shear to normal stress should equal the internal angle of friction, which
is treated as a material property. However the Potapov & Campbell (1996) results
showed that this ratio was far from constant and reached its maximum value in the
hopper throat. Finally, large-scale computer simulations of landslides, performed by
Campbell, Cleary & Hopkins (1995), indicated that the ratio of shear to normal stress
on the base of the slide increased with the shear rate (i.e. the velocity gradient at the
slide’s base) even though both rapid flow and quasi-static flow theories suggest that this
ratio should be independent of shear rate. This was an indication that the landslides
were occurring in a new regime that is neither rapid nor quasi-static. Furthermore,
these observations were consistent with the hopper simulation mentioned above, as
the largest stress ratios were found in the hopper throat where the shear rates are
the largest (as the velocities are highest and the channel is the most narrow). In the
phase-change simulations, the stress ratio could also be interpreted as increasing with
the shear rate. However, it was difficult to obtain rheological information from these
studies as neither the density or the shear rate could be sufficiently controlled.

This led to the current investigations which were originally designed to quantita-
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Figure 1. A schematic of the particle contact model.

tively determine the effect of shear rate on the stresses in dense granular flow and, in
particular, on the shear-to-normal stress ratio at controlled shear rates and concentra-
tions. The original goal was to look for flow regimes where the shear-to-normal stress
ratio varied with shear rate as observed in the three studies mentioned above. Such a
regime was found but, as shall be seen, cannot explain all of those observations.

This work was performed using a soft-particle computer simulation that is described
in the next section. Section 3 introduces the elastic–inertial and elastic–quasi-static flow
regimes which are central to this paper, along with the dimensionless parameters that
govern elastic granular flows. A broader view is presented in § 4 allowing observations
of the transitions from inertial to elastic behaviour. This is followed by a discussion
in § 5 that attempts to explain where the various flow regimes are likely to be found in
practice by analysing the appropriate elastic parameter. Finally, § 6 presents a scaling
that accounts for the effects of nonlinear stiffness in the elastic–quasi-static regime.

Preliminary reports of this work can be found in Campbell (2001a, b).

2. Computer simulation
These studies were performed using soft-particle computer simulations (see the

reviews of computer simulation techniques by Campbell 1986, 1997b, and Herrmann
& Luding 1998). The soft-particle technique generally models the interaction between
particles as a spring (which may be linear or nonlinear) in the direction along the
particle centres that acts as long as the particles remain in contact. Some mechanism
is also added in parallel to the spring to dissipate the collisional energy and here, as in
the original work of Cundall & Stack (1979), this is accomplished by putting a viscous
dashpot in parallel with the spring. The contact model is schematically illustrated in
figure 1. The spring has an associated stiffness k, which will be varied throughout
this work. The stiffness k may be linear or nonlinear, but linear springs are used
throughout this work except in § 6. Each time k changes, the dashpot coefficient D is
simultaneously varied to keep a constant binary coefficient of restitution ε (the ratio
of recoil to impact velocity for a binary collision in the centre-of-mass frame). For a
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linear spring, the coefficient of restitution is given by

ε = exp

[
− πD√

2mk − D2

]
, (2.1)

where m is the particle mass. Note that even though few flows presented in this
paper are collisional, the coefficient of restitution is still a convenient dimensionless
representation of the particle inelasticity with an easily understood physical meaning
and, as will be seen, appropriately scales the dashpot coefficient D. In the direction
tangential to the contact point the particles are connected to a frictional slider with
an associated friction coefficient µ, connected in series with another spring also with
stiffness k. (Thus as the particle surfaces move relative to one another in the direction
tangential to the contact point, the tangential spring will load until the tangential
force reaches the friction coefficient times the normal force, at which point the surfaces
slip relative to one another against a force equal to µ times the normal force.)

The simulation consists of simultaneously integrating all of the equations of motion
for all the particles in the system with forces derived from the contact model shown
in figure 1. A standard second-order time-stepping scheme is used for the integration
with a time step of dt = 0.02π/

√
2k/m− D2/m2 which corresponds to one fiftieth of

a binary collision time.
One thousand spheres of diameter d were used in all these simulations, with the

exception of a few simulations performed to test the sensitivity of the results to
the size of the simulation. The particles are confined in a cubical control volume
with dimensions roughly 10× 10× 10 mean particle spacings at whatever particle
concentration is required. The volume is kept fixed throughout the simulation. In
the following, x is used to represent the direction of the mean motion, y is the
direction of the velocity gradient (so the shear rate γ = dux/dy, where ux is the
mean velocity in the x-direction), and z represents the coordinate out of the shear
plane. The control volume was bounded in all directions by periodic boundaries.
For a classic periodic boundary, when a particle passes through one boundary it
re-enters from the opposite side with exactly the same position and velocity with
which it left; this simulates a situation where the control volume and every particle
within it are periodically repeated infinitely many times in all directions, so that,
for example, as a particle passes out through the downstream boundary, it passes
into the downstream periodic image and is replaced by a particle entering from the
upstream periodic image. However, to obtain rheological information, it is convenient
to induce a uniform shear within the control volume so as to help isolate the effect
of shear rate. To do this, the periodic images above and below the control volume
in the y-direction are set in motion with fixed velocity in the manner originally used
by Lees & Edwards (1972). It was found that uniform shearing could be achieved in
these systems up to a solids concentration of ν = 0.62, where ν is the solid volume
fraction. Beyond that concentration, the shearing generally took on a shear-band type
of deformation with only a small part of the material undergoing shear.

For the initial state of the system, the particles are positioned randomly within
the cell and the shear flow is allowed to distribute them as it will, so that the
particle configuration is eventually determined by the concentration and necessity of
conforming to a shear flow. This is difficult to arrange at large solids concentrations
when particles are in contact. To achieve this, the particles were inserted at random
positions (chosen by a random number generator) but at one-half their desired radius
(i.e. at an initially small concentration). Then the shear flow was set in motion and
during the early stages of the simulation, the particles were grown to their final
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diameters. Note that this technique is essentially the same as starting the particles in
a control volume with each linear dimension doubled and then shrinking the control
volume.

Several other techniques were examined for generating the initial state of the
system using full sized particles arranged in regular configurations including face-
centred cubic, triangular prismatic (with generators in the direction of flow) and
rhombohedral packings. The first two have symmetry planes oriented in such a way
as to allow easy shearing. Such systems could run for long periods of time generating
very little stress. However, the regular packing was always observed to break down
accompanied by a dramatic increase in the stresses; this was probably a result of the
strong frictional interaction in these dense system. After the breakdown, the generated
stresses were for all intents and purposes identical to those generated by the randomly
distributed growing particle scheme described above. For the rhombohedral packing,
which has no planes of symmetry in the direction of the shear motion, the stresses
generated were also identical to those generated by randomly distributed growing
particles. Finally, it should be noted that the geometry of the periodic cell may
preclude the system from assuming a regular packing. For example, face-centred
cubic or triangular prismatic packings will not evenly fill cubic cells. Consequently, a
few simulations were performed with initial particle configurations generated by the
random-growing technique, but in cells whose geometry conformed to face-centred
cubic or triangular prismatic packings, in order to see if the system would naturally
fall into the regular packing. This was never observed. Thus, it appears that the
initial arrangement of the particles has no effect on the stresses which are ultimately
generated by the system.

The spring/dashpot contact model shown in figure 1 is carefully chosen for these
studies as they are designed to examine cases where the bulk granular material is
responding elastically to the applied forces. In such a system, the Young’s modulus of
a bulk material consisting of many such particles is proportional to the stiffness k (for
systems of particles, the relationship was derived by Bathurst & Rothenburg 1988,
but has its roots in the lattice models of Cauchy 1828). The stiffness k between real
solid particles is strongly dependent on the geometry of, and pressure on, the contact
and is thus not solely determined by the elastic moduli of the solid material that
makes up the particles. As a result k, and not the elastic properties of the constituent
solid, is the important parameter in determining the elastic behaviour of the bulk
material. The spring/dashpot model has the advantage over more complicated models
such as the two-spring model of Walton & Braun (1986) that it has only a single
spring constant which may then be used as a characteristic scale of the problem. For
the same reason, only monodispersed spheres are studied as that allows the particle
diameter d to be used as a well-defined intrinsic length scale.

For these studies, the same stiffness k is used in both the normal and tangential
directions. Largely this was done so that there would be only a single stiffness which
could then be used as a scaling parameter. However, this choice may be critical to
this study because of the elastic nature of the generated stresses. As Bathurst &
Rothenburg (1988) show that the ratio of the tangential to the normal stiffness, kT/k,
determines the Poisson’s ratio of the bulk granular solid, tests were performed to
assess the affect of changing this ratio. The results showed that it has a very weak
effect on the magnitude of the stresses, similar to that by varying the surface friction
coefficient µ (although much weaker), and only makes a significant difference when it
has small values (less than 0.3). This should not be surprising as the tangential spring
is connected in series with the frictional slider so one would expect some similarity in
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their effects; in particular, setting the tangential stiffness to zero would be equivalent
to setting µ = 0. However, one might expect from the Bathurst & Rothenburg results
that changing kT/k would affect the ratio of shear to normal stress τxy/τyy in much
the same manner as changing the Poisson’s ratio would alter the ratio of stresses in an
elastic solid. But no such variation was observed. In fact, τxy/τyy seemed independent
of kT/k even though the magnitudes of τxy and τyy were not. Thus, for the problems
studied here, the tangential stiffness is not a significant parameter and no significant
physics are lost by assuming it equal to the normal stiffness.

One advantage of a linear contact (k = const.) in the contact model shown in
figure 1 is that any binary collision between particles will have a fixed contact time:

Tbc =
π√

2k/m− D2/m2
. (2.2)

As in Campbell (1993) and Potapov & Campbell (1996) the value of the average
actual contact time relative to Tbc may be used as an indicator of whether the
material is behaving in a collisional (rapid flow) manner. In an ideal collisional
system, the contact time must equal the binary collision time. Longer contact times
are only possible if more than two particles interact simultaneously. One can imagine a
scenario in which two particles come into contact, but before they come apart, a third
particle collides and pushes them back together, extending the collision time. During
that exchange, momentum is transmitted elastically through the particle contacts at a
rate determined by the contact stiffnesses. Note that this violates the assumptions of
rapid flow theory which assumes that the transport rates are governed solely by the
granular temperature as in a gas, and not at rates governed by the particle elasticity
as in an elastic solid.

These simulations are best thought of as computational experiments. Once the
particles are placed in the control volume and the boundaries set in motion, the
simulation proceeds as it will. Once statistically stationary conditions are reached,
the properties of the simulation are sampled and averaged over time for whatever
information is desired, in this case the stress state. The averaging time is taken to be
long enough so that the sampled stresses are no longer significantly changing with
time. Typical averaging times were γt = 300, but some went as high as γt = 10 000,
or particularly for the smallest shear rates, as low as γt = 50.

There are two mechanisms by which the stresses are generated and the techniques
for finding them are by now fairly standard. The ‘contact stresses’ reflect the force
transmitted across interparticle contacts and can be found by taking the average 〈F l〉,
where F is the vector force between the particles (which includes both compression
and frictional forces), l is the vector connecting the particle centres and 〈 〉 represents
a time average over all the particle contacts in the control volume. The ‘streaming
stresses’ reflect the momentum carried by the unsteady motions of particles as they
move through the system. In form, they appear as Reynolds stresses, ρν〈u′u′〉, where ρ
is the solid particle density, ν is the solid concentration (so ρν is the bulk density) and
u′ is the fluctuating particle velocity (determined as the r.m.s. value of the difference
between the instantaneous particle velocity and the velocity of the imposed shear
flow). The streaming stresses are small at the high concentrations studied here, but
are still sampled and included in the results.

The effect of control volume size was tested by examining cubical control volumes
ranging in size from 5× 5× 5 mean particle spacings up to 20× 20× 20, and non-
cubical volumes with the largest such simulation having 7× 100× 7 mean particle
spacings with the largest dimension in the direction of the velocity gradient. (Note
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the numbers are listed as the number of particles in the x-, y- and z-directions
respectively where the velocity gradient points in the y-direction.) All of these early
test simulations were performed at a solid concentration of ν = 0.6, and a friction
coefficient, µ = 0.5. No effect was found on the final stress results as long as the
dimensions were at least 7× 7× 7; the 10× 10× 10 size, used for all these data, was
chosen to be somewhat larger than that minimum value. (Further size tests were
performed to look for possible size effects on the points of transition in the flow
behaviour. These will be discussed later in the paper, although again no size effects
were found.)

The volume remains constant throughout all of these flows so that the solid fraction
remains a fixed, non-fluctuating constant. It should be noted that the stresses arise
from the necessity to shear the material at a fixed solid concentration. Simulations
which are started with no shearing motion generate no stresses as the solid fraction is
below a random close pack and the growing particles naturally assume configurations
where they are not in contact with their neighbours. This is probably because the
growth of the particles will gently push the neighbouring particles away, leaving a
configuration where no particles are in contact.

3. Preliminary observations of elastically dominated granular flows
The hopper, landslide and phase-change simulations referred to above all indicate

that the apparent friction coefficient, τxy/τyy , changes with the shear rate γ. At the
outset, this presents a dimensional problem as γ has units of (time)−1, while the
stress ratio τxy/τyy is dimensionless and can thus only be a function of dimensionless
parameters. Note that the inverse shear rate represents the only time scale in rapid
granular flow theory, while no time scale appears in quasi-static theories. Thus some
other parameter must be introduced into the analysis which contains units of time
by which the shear rate can be scaled. The only possible candidates come from the
particle contact model. As the particle surface friction and the coefficient of restitution
are dimensionless, the most likely remaining possibility is the contact stiffness, k. A
stiffness scaled with the shear rate has the form

k

ρd3γ2
. (3.1)

Note that this is similar to the parameter B, studied by Babic, Shen & Shen (1990).
A time scale also exists from the viscous damping in the contact model. Choosing

k to supply the time scale implicitly assumes that the effect of the viscous damping
is completely accounted for by the coefficient of restitution, ε as given in (2.1).
This assumption can be tested by working with different diameters, shear rates and
stiffnesses that yield the same k/(ρd3γ2) but, as can be seen from (2.1), require
different D to maintain the same ε. This was done throughout this work and when
properly scaled (in the manner discussed below), the resultant stresses and stress
ratios overlapped nearly exactly which indicates that no other parameter makes a
significant contribution.

Figure 2 shows a plot of the shear to normal stress ratio τxy/τyy as a function of
k/(ρd3γ2) at a constant solid concentration, ν = 0.6, particle surface friction coefficient
µ = 0.5, and for three different coefficients of restitution, ε = 0.1, 0.7 and 1.0. The
concentration ν = 0.6 is used for these preliminary studies as all of the cases discussed
above, phase-change, hoppers and landslides operate near the shearable limit (about
ν = 0.63). From the form of k/(ρd3γ2) it can be seen that increasing the stiffness k



268 C. S. Campbell

0.60

0.55

0.50

0.45

0.40

0.35

0.30
104 102 103 104 105 106 107 108

ε = 0.1

0.7

1.0

k /(ρd3γ2)

τ xy
/τ

yy

Figure 2. The ratio of shear to normal stress, τxy/τyy , as a function of the parameter, k/(ρd3γ2). All
of these data were taken from 1000-particle computer simulations at a constant solid concentration,
ν = 0.6 and particle surface friction, µ = 0.5 for three different values of the coefficient of restitution,
ε. Note that τxy/τyy decreases with k/(ρd3γ2) (i.e. increasing k, decreasing γ) eventually approaching
a constant value indicative of quasi-static behaviour.

moves one from left to right on the figure, while increasing the shear rate γ moves
one from right to left. One can see that for the lower values of k/(ρd3γ2), the values
of the stress ratio τxy/τyy drop with increasing k/(ρd3γ2) (i.e. with increasing k or
with decreasing, γ). For large values of k/(ρd3γ2) (i.e. large k, small γ) the stress
ratio becomes constant which is indicative of the quasi-static behaviour; quasi-static
flow should be expected as this limit corresponds to zero shear rate. Note that
the coefficient of restitution ε is only important at small k/(ρd3γ2), which might be
expected as this corresponds to conditions of large shear rates with correspondingly
large impact velocities, which will generate large dashpot forces from the contact
model shown in figure 1.

Thought of as a dimensionless shear rate, the effect of k/(ρd3γ2) on τxy/τyy fits the
basic understanding of quasi-static (small γ) and inertial (large γ ) behaviour. But if
thought of as a dimensionless contact stiffness, k, the behaviour somewhat contradicts
that picture. Large k implies a shorter binary contact time and approaches the
instantaneous contact time assumption implicit in rapid-flow theories; yet increasing k
(leading to large k/(ρd3γ2)) corresponds to more quasi-static behaviour. This apparent
contradiction will be resolved in the next section, which will show that the collisional
and quasi-static limits are separated, not by shear rate, but by concentration. There
it will be shown that at the larger ν, increasing k/(ρd3γ2) approaches the quasi-static
limit (as shown in figure 2), but at only slightly smaller ν, the flow approaches
collisional behaviour at large k/(ρd3γ2). Thus both interpretations of k/(ρd3γ2) are
correct, but under different circumstances.

Figure 2 (and for that matter, figures 3–5) also demonstrates that the scaling of the
problem is dependent on the dashpot coefficient, D, only through the coefficient of
restitution ε. Except for the two extreme values of k/(ρd3γ2), two and in some cases
three stiffnesses, varying over 2–3 orders of magnitude, and three particle diameters,
varying over a factor of 4, were used for each combination of k/(ρd3γ2) and ε in
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Figure 3. The individual components of the stress tensor scaled by the particle stiffness, τijd/k, for
the data plotted in figure 2 (ν = 0.6, µ = 0.5). (a) τxx, (b) τxy , (c) τyy , (d ) τzz . Note that the data scale
with the stiffness indicating that the stresses are generated by the elasticity of the material. Panel
(a) schematically illustrates the division of the regimes into elastic–inertial and elastic–quasi-static.

this figure. Except for some slight elongation of the square-shaped points, which is
the only apparent manifestation of the corresponding data scatter, the points overlap
almost exactly. This demonstrates the robustness of the dimensional scaling of the
problem. Notice that from equation (2.1), if ε is to be held constant then D must be
changed every time that k changes. Yet there is no resultant scatter in the results,
indicating that all the dimensional effects of changing D are accounted for by the
coefficient of restitution ε.

Figure 3 shows the individual stresses scaled by the stiffness, τijd/k. Again, these
data were generated for two (and in some cases, three) different values of the stiffness
k, and three particle diameters d, although this is not apparent in the figure as the
values overlay one another almost exactly. Notice that both quantities decrease with
k/(ρd3γ2), becoming constant at large k/(ρd3γ2), just as for the stress ratio, τxy/τyy .
Note also that all the stress components vary with the coefficient of restitution ε in a
manner qualitatively similar to the stress ratio shown in figure 2 although the shear
stress τxy is more strongly dependent on ε than any of the normal stresses.

As the stresses scale with the particle stiffness k, the rheology is dominated by the
particle elasticity. Furthermore, as illustrated in figure 3(a), the flows can be further
subdivided into an ‘elastic–inertial’ regime in which the stresses scale elastically but
also increase with shear rate. This corresponds to the region k/(ρd3γ2) < 105. For
k/(ρd3γ2) > 105 the stresses again scale elastically but are strain-rate independent
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Figure 4. The effect of particle surface friction on the stress ratio τxy/τyy , from 1000-sphere
simulations at a concentration ν = 0.6.

forming an ‘elastic–quasi-static’ regime. It is worth noting that the stresses in the
elastic–inertial regime increase linearly proportional to the shear rate (i.e. proportional
to (k/(ρd3γ2))−1/2). As they do not increase proportional to the square of the shear
rate they cannot be thought of as the sum of a quasi-static stress and a Bagnold-like
inertial stress. In particular, increasing the shear rate (decreasing k/(ρd3γ2)) does not
cause a transition from a quasi-static behaviour to a Bagnold-like behaviour. This
is counter to the general assumption that quasi-static behaviour is to be expected at
small shear rates and a Bagnold-like behaviour is to be found at large shear rates.
While a flow regime transition is observed by changing the shear rate, the transition
is between quasi-static behaviour and a third flow regime, the elastic–inertial.

The effect of the particle surface friction µ is shown in figures 4 and 5. For a rapid
granular flow, the surface friction largely affects only the energy dissipation (at least
far from solid boundaries), so that for a given shear rate and concentration, the larger
the surface friction, the larger the energy dissipation and, consequently, the smaller
the granular temperature and all of its associated transport rates. But overall this
effect is weak. It is not surprising that a much stronger effect might be felt at large
concentrations where one can expect enduring contacts, and thus a greater sensitivity
to the details of the contact model. Along those lines, figure 4 shows a relatively
strong effect of the surface friction on the stress ratio τxy/τyy . As might be expected
expected, τxy/τyy increases with µ. But notice that while there is a significant change
in τxy/τyy on increasing µ from 0.1 to 0.5, there is a relatively minor change going
from µ = 0.5 to 1.0. (Note: curve fitting shows that all the lines will collapse together
by plotting (τxy/τyy)

−0.085 as a function of k/(ρd3γ2).)
Much more interesting is the effect on the normal stress τyyd/k plotted in figure 5. In

particular, in the quasi-static limit (large k/(ρd3γ2)) the low friction case µ = 0.1, shows
almost no generated normal stress (in fact, the µ = 0.1 stresses at k/(ρd3γ2) = 107 are
about 350 times smaller than those for µ = 0.5 or 1.0). This indicates the ultimate
source of the stresses in this elastic limit are the ‘force chains’ that form within a dense
granular material (see for example Cundall & Strack 1979; Drescher & De Josselin
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Figure 5. The effect of particle surface friction on the scaled normal stress τyyd/k for the data
presented in figure 4. Surprisingly, there is a very strong effect of µ on the normal stress. In fact the
normal stress for µ = 0.1 almost disappears in the quasi-static limit (large k/(ρd3γ2)). This indicates
that the stress is supported by elastic particle networks whose strength depends on their structural
integrity which is strongly affected by µ.

de Jong 1972; Mueth, Jaeger & Nagel 1998). These are networks of particles with
heavily loaded contacts that transmit force elastically through the system. Their
elastic nature is evident as force chains are experimentally detected using photoelastic
techniques. In a shearing system, the shear motion will force chains to form, rotate
and compress, a process that eventually causes the chains to break and collapse.
After collapse, the potential energy of the contacts is converted to the kinetic energy
of the particles which is quickly dissipated by the contact inelasticity and friction.
(This process has been visualized in a two-dimensional photoelastic system by Howell,
Behringer & Veje 1999a, b. It is nearly identical to Bonnecaze & Brady’s 1992 model
of electrorheological fluids except that there the particle interaction is a conservative
electrical force, while here it is a conservative elastic force.) The concentration ν = 0.6
used for all of these examples is smaller than the concentration of a random close pack
of uniformly sized spherical particles; as a result, there are possible configurations
for which the particles are not in intimate contact and thus may not be able to
generate a normal stress unless something (in this case the shear flow) forces them
together. The ultimate strength of the chains, i.e. the maximum load they can support
before breaking, is strongly affected by the interparticle friction. For the small-friction
µ = 0.1 cases shown in figure 5, these chains are weak and can only support very
weak forces before the structure fails. Specifically, at large values of k/(ρd3γ2), only
weak force chains form and little normal force can be supported before they break.

The effect shown here cannot be simply related to the friction coefficient, µ. Unlike
the τxy/τyy plot shown in figure 4, it is not possible to collapse these curves together by
plotting the data in the form (τyyd/k)f(µ) as a function of k/(ρd3γ2); this can be easily
seen as at k/(ρd3γ2) = 107 the stresses for µ = 0.1 are about 350 times smaller than
those for µ = 1.0, whereas they are only about 1.8 times smaller at k/(ρd3γ2) = 100.

The effect of the friction coefficient can be observed directly by examining the time
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Figure 6. Time traces of the scaled contact normal stress, τcyyd/k, plotted as functions of dimen-
sionless time γt at ν = 0.6. (a) µ = 0.5, k/(ρd3γ2) = 107, (b) µ = 0.1, k/(ρd3γ2) = 107, (c) µ = 0.5,
k/(ρd3γ2) = 100. Cases (a) and (b) lie far out in what should be the elastic–quasi-static regime while
(c) lies in the elastic–inertial regime. Note that the scale of (b) is magnified 160 times over that of
(a) and that the largest value in (c) is nearly 3 times that in (a).

traces of the contact normal stress τcyyd/k (these are only the stresses generated by
interparticle contacts) corresponding to k/(ρd3γ2) = 107, that are shown in figure 6(a)
and 6(b). Figure 6(a) shows the case for µ = 0.5 while figure 6(b) shows the cor-
responding case for µ = 0.1; note that the vertical scale on figure 6(a) is 160 times
larger than that for figure 6(b). Both show a fluctuating spiked behaviour that results
from the formation and breakage of the internal force chains or at least of multi-
particle structures that may be precursors to force chains. Such temporally fluctuating
forces have also been observed experimentally by Miller, O’Hern & Behringer (1996),
and Howell, Behringer & Veje (1999b). Fluctuations that are qualitatively similar to
figure 6(b) have been observed in rapid flow, e.g. Glasser & Goldhirsch (2001).

For the µ = 0.1 plot shown in figure 6(b), the peaks are not only orders of
magnitude weaker, they also persist for a much shorter time. The difference will be
explained in the next section, which will show that the µ = 0.1 flows are behaving
inertially while the µ = 0.5 flows are behaving elastically. However, because the
peaks in figure 6(b) are much wider than the binary collision time (on this scale
γTbc = 0.0005 and is essentially invisible in figures 6a and 6b) it is clear they are
generated from multiparticle interactions that can only be viewed as an attempt of
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the material to form force chains. The shearing of the material results in compression
of the chains and the generation of the resultant stresses. Thus for µ = 0.5, the force
chains are stronger and persist for longer periods of time before breaking. The longer
life of the force chains allows the shear to compress them to a greater extent, resulting
in the larger stresses. In this way, long structural life and large stresses go hand in
hand.

Figure 6(c), again shows ν = 0.6, µ = 0.5 data, but this time from the elastic–
inertial regime at k/(ρd3γ2) = 100. Notice that despite the slightly larger stresses
(which simply reflects the difference in the mean stresses shown in figure 3c) the
plot is very similar to figure 6(a). But because of the larger shear rate used in this
simulation (about 100 times larger than those in figures 6a and 6b), the actual time
period shown is 100 times shorter. But note that when scaled in this way, the duration
of the peaks is about the same in figures 6(a) and 6(c). This indicates that, despite
the different flow regime, the stresses in both cases are generated by the formation,
rotation and destruction of force chains. Note that γt represents the strain so these
figures indicate, as might be expected, that this process depends on the strain and not
on the strain rate.

This provides the key to understanding elastic–quasi-static and elastic–inertial
behaviour. Increasing the strain rate causes the force chains to form faster and more
frequently (at a rate proportional to the strain rate), but persist for shorter times (a
time inversely proportional to the strain rate as will be shown in figure 9 below) so
that the time-averaged stress remains strain rate independent. The magnitude of the
generated forces is proportional to the degree to which the chains are compressed
by having to conform to a shear motion under the constraint of constant solid
concentration. The interparticle forces are generated by geometric constraints and are
therefore shear-rate independent. The elastic–inertial behaviour can be understood as
the rising importance of additional inertial forces in the same context. Inertia can be
imagined to contribute to the magnitude of the interparticle forces in the following
way. As the chain forms, it will gather fast- and slow-moving particles together and
by decelerating or accelerating the particles as required, force them to conform to the
motion of the chain. The magnitude of this extra momentum and thus the additional
interparticle force generated would be proportional to the shear rate γ. Now imagine
the process of formation, growth and destruction of a chain via a shear motion. If e is
the shear strain of the chain (i.e. e is the time integral of γ since the time the chain was
formed) then the force, F , can be expected to vary as F = ae+ bγ where a and b are
functions of the material properties and concentration. Averaging over the life of the
chain yields 〈F〉 = a〈e〉+ bγ. As before, the chain formation rate is proportional to γ,
but the chain duration is proportional to 1/γ. The stress τ is proportional to 〈F〉 and
will have the form τ = A + Bγ. Thus one can anticipate quasi-static behaviour until
Bγ becomes significant, and a linear increase with shear rate thereafter – exactly as
observed in figures 2–5. Note that this also explains the weak effect of the coefficient
of restitution seen for small values of k/(ρd3γ2) in figures 2 and 3; only at large γ are
the impact velocities large enough so that the viscous damping significantly affects
the applied forces.

Note that the scaled duration of the peaks in figure 6(c) appear to be slightly
longer than those in figure 6(a). This will be partially explained in § 5. There it will
shown that for the conditions in figure 6(c), the time it takes a chain to destruct,
proportional to the rate at which particles elastically repel each other (which is related
to the binary collision time), is becoming a significant fraction of the life of the chain.
As that process depends on the elastic properties and not on the shear rate (which
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governs all the other processes in the life of a force chain) the chain duration when
scaled by the shear rate will be slightly longer for higher shear rates (i.e. at the smaller
k/(ρd3γ2)). (Note, due to the increased shear rate used to derive this plot, γTbc = 0.16
on this scale and is more noticeable than in figures 6(a) and 6(b).)

The forces in figures 6(a) and 6(c) are quite large – especially if one recognizes that
τd/k can be thought of as a dimensionless contact displacement. This can be easily
seen by remembering that figure 6 shows only contact forces and that the force on
a contact will appear as a stress acting over an area of the order of the projected
area of a particle. Then τd2 ∼ kδ where δ is a characteristic contact displacement.
Rearranging gives δ/d ∼ τd/k. Thus the largest peaks in figures 6(a) and 6(c)
correspond to displacements of the order of 1.6% and 4.4% of a particle diameter,
indicating the great strength of the force chains. Note that because the stiffness has
been scaled out of the problem, this is not a result of using soft particles, but comes
from the geometric restrictions of a constant-volume shear flow. (Note also that only
very small volume changes would be required to relax these forces.) These forces
are large enough to shatter brittle particles and, indeed, handling induced particle
attrition is a constant industrial problem resulting in large monetary losses.

4. The transition between pure inertial and elastic flow
At this point, a picture begins to emerge that suggests a dimensional analysis of

the form

τ = f(ν, k, γ, d, ρ, µ, ε), (4.1)

which has two equivalent non-dimensional scalings for the stress. The first would be
to use a purely inertial scaling:

τ

ρd2γ2
= f

(
k

ρd3γ2
, ν, µ, ε

)
. (4.2)

The second would be to scale the stresses with the interparticle stiffness as was done
in the last section:

τd

k
= f

(
k

ρd3γ2
, ν, µ, ε

)
. (4.3)

Note that these two scalings are simply related as τ/(ρd2γ2) = (k/(ρd3γ2))(τd/k).
Now there are two implicit limits with these scalings. The first is the pure inertial

flow limit where the rheology becomes independent of the stiffness k. Such a region can
be anticipated in the limit of collisional behaviour, where it is possible to compute the
result of a collision purely from momentum considerations without any consideration
of the stiffness or any other details of the collision. However, inertial behaviour may
extend beyond the pure collisional limit and thus this scaling by itself does not imply
that the flow is a rapid flow. In the inertial limit, the stiffness k and thus k/(ρd3γ2)
must disappear as parameters, leaving

τ

ρd2γ2
= f(ν, µ, ε). (4.4)

The second is the elastic–quasi-static limit where the rheology becomes independent
of the shear rate γ, so that again k/(ρd3γ2) disappears as a parameter, leaving

τd

k
= f (ν, µ, ε) . (4.5)

Somewhere between these limits lies the elastic–inertial regime for which either the
inertial scaling for the stress, τ/(ρd2γ2), or the elastic scaling, τd/k, is appropriate
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and for which k/(ρd3γ2) remains as a parameter. This will be used to precisely define
the elastic–inertial regime. That is, elastic–inertial behaviour covers the region where
both the elastic and inertial scalings τd/k, τ/(ρd2γ2) are dependent on the parameter
k/(ρd3γ2).

It is valuable then to consider both scalings for the stress as the deviation from
the expected behaviour under each scaling can be used to detect the boundaries of
the various flow regimes. To that end, figure 7 shows a logarithmic plot of the elastic
scaling of the normal stress τyyd/k as a function of concentration, for three different
values of the friction coefficient. In this scaling, the stress for a quasi-static (elastically
dominated) flow will appear as a horizontal line. If the flow is inertially dominated,
one would expect the stresses to be proportional to ρd2γ2, which means that, when
scaled as in figure 7, the slopes of the lines should be −1, which is indeed achieved
at the larger values of k/(ρd3γ2). (A large k/(ρd3γ2) implies a small shear rate γ,
which leads to the ironic conclusion that small shear rate flows are more ‘rapid’ than
large shear rate flows.) Figure 8 shows the same data plotted logarithmically with
the inertial scaling, τyy/(ρd

2γ2). Here if the lines are horizontal, the flow is behaving
inertially and any slope in the lines indicates an elastic influence. In particular, for
a quasi-static flow, the stresses τyy are independent of γ so that τyy/(ρd

2γ2) increases
linearly proportional to k/(ρd3γ2) (i.e. with unit slope on these logarithmic plots). In
all cases, an elastic–inertial behaviour is apparent for small k/(ρd3γ2), but for large
k/(ρd3γ2) the flow again exhibits either an elastic or an inertial behaviour with a
very sharp transition between the two. Note that it is difficult to discern the elastic–
inertial regime in any of these plots simply because the baseline elastic behaviour
so dominates the overall stress that the additional inertial stresses (which produce at
most a factor of 3 variation in the stresses shown in figures 3–5) all but disappear
when plotted logarithmically.

Now, examine the limit at large k/(ρd3γ2). Following the criteria in the last para-
graph, notice that for µ = 0.5 and 1.0, the material exhibits quasi-static behaviour
for ν = 0.59 and larger, while for µ = 0.1, quasi-static behaviour is only observed for
ν = 0.62. Below ν = 0.58, for µ = 0.5 and 1.0 and below ν = 0.61 for µ = 0.1, the
material appears to behave in a purely inertial fashion. The transition from elastic
to inertial behaviour at these k/(ρd3γ2) is very rapid, occurring over at most a 2%
change in concentration. In fact, the only cases in which a transitional behaviour is
observed – that is cases where the data follow a trend lying somewhere between the
elastic–quasi-static and pure inertial behaviours at large k/(ρd3γ2) – is at ν = 0.58 for
µ = 1.0 and at ν = 0.61 for µ = 0.1. The µ = 0.5 data show no mixed behaviour and
a rapid transition between pure elastic and pure inertial behaviours occurs within a
1% change in the particle concentration. The two transitional cases can be recog-
nized by comparing their behaviour in the two different scalings. Notice that when
plotted with the elastic scaling in figure 7(c), the ν = 0.58, µ = 1.0 data appear to
have a significant inertial component, yet, when plotted with the inertial scaling in
figure 8(c), they seem to group with the elastic data. Collectively these illustrate their
mixed nature.

This indicates that much of the difference between figures 6(a) and 6(b) is due to
different physical origins of the stress; figure 6(a) is an elastically dominated stress,
while figure 6(b) is inertially dominated. Despite this, note that long duration contacts
are apparent in figure 6(b), indicating that the material is trying to form structures
that are at least the precursors to force chains. However, the corresponding elastic
stresses are much weaker than the inertially generated stresses and do not significantly
affect the overall rheology.
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The narrow band of concentrations over which the transition between elastic
and inertial flows occurs at large k/(ρd3γ2) suggests a percolation threshold at
which the force chains form. Elastic–quasi-static behaviour is realized when these
structures dominate the force transmission; the fluctuating forces are generated as
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these chains form, and are compressed and destroyed by the velocity gradient. At
lower concentrations, the chains, if they form, quickly break so that particle inertia
remains an important component of the momentum transport. If this is indeed a
percolation behaviour, one might worry that these transition concentrations could be
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strongly dependent on the system size. Thus, tests were performed at k/(ρd3γ2) = 107

(at which the regime transition is accompanied by several orders of magnitude of
stress change) on larger control volume sizes both by doubling the size in all three
dimensions to 20 × 20 × 20, and by extending one dimension by a factor of 10 to
10× 100× 10. Such tests were performed on both sides of each observed transition.
However, the measured stresses changed by less than 4% in all cases and changing
the system size never caused a transition between elastic and inertial behaviour. Thus
the transition concentrations appear to be insensitive to system size.

One should also note that as k/(ρd3γ2) is reduced, it is possible to observe a
transition from pure inertial to elastic–inertial behaviour. This is most clearly seen in
figure 8 as a transition from a sloping line at small k/(ρd3γ2) to a horizontal line at
larger k/(ρd3γ2). This indicates that large shear rates can force the formation of force
chains – a process that will be partially explained in the next section.

Also note that at a fixed concentration, ν, and fixed particle properties µ, d and k,
there is no path between pure inertial and quasi-static behaviour by simply varying
the shear rate, γ. For those conditions, changing γ is equivalent to changing k/(ρd3γ2)
which can only cause a change from inertial–elastic and elastic–quasi-static behaviour
or from elastic–inertial to inertial behaviour. This counters the generally accepted
notion that, all else being equal, quasi-static behaviour can be observed at small shear
rates and pure inertial behaviour observed at large shear rates. Instead, it appears
that the transition from inertial to quasi-static behaviour can only be observed by
changing the concentration, and then only at low shear rates (large k/(ρd3γ2)).

As discussed in § 2, the ratio of the contact time to the binary collision time, tc/Tbc,
can be used as a probe to determine if the particle interactions are collisional. Any
binary collision must have a contact time tc, equal to the binary collision time, Tbc.
However, if one envisions that particle contacts are caused by the shear flow forcing
particles together in force chains, rotating the chains and finally breaking them, then
one would expect the contact time tc to be inversely proportional to the shear rate and
independent of the binary collision time. Thus, when plotted in a log-log plot against
k/(ρd3γ2), one expects tc/Tbc to have a slope of 1

2
in the elastic regimes. Figure 9

shows plots of tc/Tbc for the three values of the friction coefficient. It can be clearly
seen that at larger concentrations and at smaller values of k/(ρd3γ2), the data fall
along a line with slope 1

2
indicative of elastic behaviour. For smaller concentrations

and larger values of k/(ρd3γ2), the values of tc/Tbc become only weakly dependent on
γ and approach tc/Tbc = 1. This change in tc/Tbc behaviour is another indicator of
the transition from elastic to inertial behaviour. Notice that the change coincides with
the transitions apparent in figures 7 and 8. In particular, note that one can observe
a transition from elastic–inertial to pure inertial behaviour by increasing k/(ρd3γ2).
Note also that even in the inertial range, tc/Tbc can be much larger than 1, indicating
that, even though the material is behaving inertially, it is not collisional and thus not
strictly a rapid flow.

Rapid flow analyses assume that all particle interactions are binary so that the
transport rate is governed by the time between collisions and thus by the granular
temperature. If more than two particles are in simultaneous contact, transport can
occur between the particles through elastic waves travelling across the contact points –
a rate which is governed by the elastic properties and not by the granular temperature –
and thus cannot be considered ‘rapid’. Again, and somewhat ironically, tc/Tbc goes
to unity as k/(ρd3γ2) becomes large, indicating that the slower they shear, the more
the flows become ‘rapid’. This is one one reason why rapid flows are seldom observed
under Earth’s gravity. On one hand to meet the collisional criterion, they must shear
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slowly, but on the other, to generated large enough dispersive stresses to support the
material against gravity, they must shear rapidly.

Note that this also illustrates the dual nature of the parameter k/(ρd3γ2) that was
alluded to in the last section. In the elastic regime, quasi-static behaviour is observed
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at large k/(ρd3γ2), indicating that this may be thought of as the zero shear rate
(k → 0) limit, while at slightly lower concentrations, in the inertial regime, flows
become collisional at large k/(ρd3γ2) implying that this represents the rigid particle
(k →∞) limit.

Collectively, this information allows us to create flowmaps of the various flow
regimes. These are shown in figure 10 as functions of k/(ρd3γ2) for ε = 0.7 and
the three values of the surface friction coefficient. In this plot, the transition from
elastic–inertial to elastic–quasi-static behaviour was determined from plots such as
figure 3 for each concentration, by drawing lines through the points corresponding
to the two regimes and noting the value of k/(ρd3γ2) at which they intersect. The
transition from elastic–inertial to inertial–non-collisional behaviour was determined
by the points where the transition occurs in figures 7–8. In figure 7, this would be
the point where the slope of the line for a given concentration became −1, indicative
of inertial behaviour. In figure 8, this would be the point where the line for a given
concentration shifted from sloping to horizontal. The transition from elastic–quasi-
static to inertial–non-collisional behaviour was simply the concentration at which
quasi-static behaviour was last observed for a given µ. Note that these figures reach
lower values of the solid fraction than are seen in figures 7–9 as elastic–inertial
behaviour was observed for concentrations as small as ν = 0.45 for µ = 1.0 and
k/(ρd3γ2) = 100.

More difficult to determine is when a flow can be regarded as ‘collisional’. Strictly,
a collisional flow corresponds to tc/Tbc = 1 and any value larger than unity indicates
non-collisional behaviour. In practice, there will always be simultaneous multiparticle
interactions even if they occur with vanishing probability so that such an ideal case
is never achievable. The question then arises of to what degree a small number
of multiparticle interactions affect the flow’s behaviour. Such a determination is
well beyond the scope of this paper. Three lines have been added to figure 10
roughly pointing out the places where tc/Tbc falls below 1.5, 1.25 and 1.1, so as to
leave the determination up to the reader. Note that these lines generally rise with
k/(ρd3γ2) indicating that the particle interactions are becoming more collisional at
large k/(ρd3γ2). But notice that the lines flatten at the top indicating that at larger
concentrations tc/Tbc remains well above unity and gave no indication that it would
ever fall no matter what the value of k/(ρd3γ2).

The prescribed values chosen here are very close to unity and were made based
on small simulations run to try and understand how confinement by surrounding
particles extends the collision time. In these simulations, it was imagined that two
particles were undergoing collision, and at the moment of maximum compression,
when the particles had ceased to approach one another, they were placed in intimate
contact with a line of stationary particles. The confining particles were placed so
that the distances between their centres were exactly a particle diameter, so that their
surfaces were in contact but no forces were generated; only the original colliding
particles overlapped and experienced a force. In such a case, the collision will be
lengthened due to the necessity of pushing away the surrounding particles. However,
the collisions were not found to be lengthened to any large degree. For example, with
a single confining particle on each side, the collision is lengthened to tc/Tbc = 1.03.
In fact, with an infinite number of confining particles, the collision is lengthened
to tc/Tbc = 1.08. In the latter case, the collisional energy becomes an elastic wave
travelling down the line of particles, and because the wave never reflects before the
end of the original collision, the original collision is unaware of the length of the line
of confining particles. (Actually, this limit is reached with as few as three confining
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particles on each side.) In such a case, there is a transport of momentum over infinite
distances that is both non-collisional and independent of the granular temperature.
On that basis, it seems quite reasonable to assume that tc/Tbc = 1.1 is an upper
limit to collisional behaviour. But again, this is a subject worthy of further study. In
contrast it should be noted that in the elastic regimes, the contact times are of the
order tc/Tbc = 100–1000.

5. Interpretations of the parameter k/(ρd3γ2)

Bathurst & Rothenburg (1988) showed that for randomly packed spheres with
linear contacts, the Young’s modulus varies as

E ∝ nk

d
, (5.1)

where n is the coordination number (the average number of contacts between particles)
which in practice can vary from 0 to about 6. (Bathurst and Rothenburg’s expression
for three-dimensional assemblies appears only at the end of the paper and contains
an undetermined definite integral, but the above scaling is still apparent in their
equation.) This means that

n

(
k

ρd

)
∝ E

ρ
∝ (sound speed)2. (5.2)

But since γd is a shear velocity, the grouping
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ρd3γ2
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)2
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(

1
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)2

(5.3)

can be interpreted as an inverse square Mach number based on the shear velocity
γd. Examining figure 2, one sees that the stress ratio can be observed to drop with
k/(ρd3γ2), until a value of k/(ρd3γ2) = 104, which implies a Mach number of the
order of 10−2.

The sound speed gives us a means to calculate appropriate values for the stiffness
k. In loose sand, the sound speed is of the order of 100 m s−1 (Richart, Woods & Hall
1970). To within an order of magnitude then

k

ρd
≈ 104 m2 s−2. (5.4)

This means that to be in the elastic–inertial regime, (d2γ2) ∼ 1 m2 s−2. Thus if one
assumes particles of 1 mm size, the shear rate would have to be close to γ ∼ 1000 s−1,
which would never be encountered in practice as the impacts would probably shatter
the particles. Even if one includes the effect of coordination number, n, in the
calculation, this would at best drop this estimate by a factor of 3 at most. Of course
larger particles would give a correspondingly smaller limiting shear rate. Following
this logic, the rapid granular shear flow experiments of Wang & Campbell (1992)
using 3 mm glass spheres at shear rates of ∼ 100 s−1 would roughly correspond to
k/(ρd3γ2) = 104. Even the largest values studied here, k/(ρd3γ2) = 107, correspond
to 3 s−1 of shear for the same particles. (Because of that realization, test cases were
run at values up to k/(ρd3γ2) = 1010, particularly around the transitions to and from
elastic behaviour, but no noticeable changes in behaviour were observed.) However,
smaller values of k and larger diameters quickly reduce the value of k/(ρd3γ2). For
example commercial plastics have moduli that are generally two orders of magnitude
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smaller than quartz and are often formed into large ∼ 5 mm pellets, and thus
should exhibit elastic–inertial behaviour at an easily reachable 5 s−1 of shear. And
of course there are many materials such as cigarettes, encapsulated pharmaceuticals
and foodstuffs, that are softer still, and make the inertial–elastic regime even more
accessible.

The conclusion that can be drawn here is that realistic values of k/(ρd3γ2) can be
quite large so that the elastic–inertial regime is difficult to reach for many common
materials. This has interesting implications for the discussion in the last section. If
one looks at the data in figures 7 and 8 at the large k/(ρd3γ2) which are likely to
be encountered, it appears that either pure inertial or pure quasi-static behaviour is
observed depending on the concentration, with little or no transition region between
them. Furthermore, most flows that are to be encountered under Earth’s gravity are
most likely to be out in the quasi-static range of figure 2.

This discussion begs a complementary interpretation of the parameter k/(ρd3γ2).
In standard fluid mechanics, a large Mach number is indicative of a compressible
material and, not surprisingly, the same interpretation can be made for k/(ρd3γ2).
Basically, a small k/(ρd3γ2) (analogous to a large Mach number) means that there is
enough inertial energy in the particles to cause significant deformation of the particles
against the stiffness k. If all the inertial energy were to be converted into the potential
energy of a contact, it would cause an overlap δI so that

m(∆v)2 ∼ ρd3(dγ)2 ∼ 1
2
kδ2

I . (5.5)

Rearranging: (
δI

d

)2

∼ ρd3γ2

k
. (5.6)

Thus, k/(ρd3γ2) can be thought of as the inverse square of the particle overlap
that is generated by the flow inertia, distinguished from that generated by quasi-
static mechanisms such as the compression of force chains. In that sense, flows
at small k/(ρd3γ2), like flows at significant Mach number, are fluid dynamically
compressible.

The appearance of this compressibility explains the anecdotal observation made
during the course of these simulations that at small k/(ρd3γ2) it was possible to
obtain a uniform shear flow at larger concentrations than was possible at large
k/(ρd3γ2). For example, at k/(ρd3γ2) = 100, the material exhibited uniform shear at
ν = 0.63, while at k/(ρd3γ2) = 100 000, it exhibiting a shear-banding behaviour. At
such significant ‘compressibilities’ the particles just compress, deform and push past
their neighbours. As there is nothing in rapid granular flow theory that accounts
for compressibility effects it also helps explain the observation in figure 7 that the
incompressible large-k/(ρd3γ2) flows are more ‘rapid’ than their larger shear rate, but
compressible small-k/(ρd3γ2) counterparts.

Finally, there is one more interpretation of k/(ρd3γ2) that yields insight into why
the flow can be observed to transition from inertial to elastic–inertial behaviour as
k/(ρd3γ2) is reduced. First, consider the expression for the coefficient of restitution ε
in (2.1), which can be inverted to obtain

D2

2mk
=

(
D2

m2

)( m
2k

)
=

1

(π/ ln ε)2 + 1
. (5.7)

This can be recognized as the ratio of the two terms in the denominator of equation
(2.2) for the binary contact time Tbc. From (5.7) it can be seen that in most cases
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(D2/m2) � (2k/m). For example, for ε = 0.7, used here, (D2/m2) = 0.013(2k/m). In
such cases, the binary contact time is dominated by the stiffness k so that

Tbc ≈ π√
2k/m

= π

√
ρd3

12k
∝
√
ρd3

k
. (5.8)

Hence:
k

ρd3γ2
∝ 1

(Tbcγ)
2
. (5.9)

In other words, k/(ρd3γ2) may be thought of as the square of the ratio of the time
between shear-rate-induced particle impacts, which goes like the inverse shear rate
∼ 1/γ (note this same interpretation applies in rapid flow theory as the collision rate
varies as the square root of the granular temperature which in turn varies as 1/γ), to
the time it takes the contact forces to drive the particles apart, Tbc. Thus, at small
values of k/(ρd3γ2), particles are being forced together at a rate that is becoming
comparable to the collision time. This allows force chains to form at smaller values
of ν than one would anticipate. In turn, this explains why a material can exhibit
elastic–inertial behaviour at small k/(ρd3γ2) and inertial behaviour at large k/(ρd3γ2).
It also explains why the scaled duration of the peaks in figure 6(c) is slightly longer
than that in figure 6(a). The peak duration will consist of the rate at which the shear
motion creates rotates and destroys the force chains. All those process but the final
chain destruction are governed by the shear rate γ. The time it takes the particle
elasticity to break apart a collapsing chain is proportional to the binary contact time
Tbc. At small values of k/(ρd3γ2), Tbc becomes a significant fraction of the chain’s
lifetime, resulting in slightly larger dimensionless durations, when as in figure 6, the
duration is scaled with the shear rate.

6. The effect of non-linear contact stiffness in the elastic–quasi-static regime
By now it should be obvious that the contact model has a strong effect on the

rheological behaviour in the elastic region. This problem is compounded by the fact
that real contacts generally behave nonlinearly so that the force generated is not
linearly proportional to the contact displacement. Thus, this section will try to assess
the effects of such nonlinearity on the scaling behaviour in the elastic–quasi-static
regime.

So far we have only considered linear contact springs, for which the force generated
on a contact is

F = kδ, (6.1)

where δ is the overlap between the particles. Now if one were to assume that the
contact between particles behaved in a Hertzian fashion, then when placed in this
context, the force would vary as

F = kHδ
3/2, (6.2)

where the constant kH is a function of the elastic properties of the particle and
local radii of curvature of the contacts. Many people anticipate that materials should
behave in a Hertzian fashion simply because Hertz theory is a solution to linear
elastic theory. However, that does not appear to be borne out by measurements. The
sound speed in a granular material depends on the elastic properties of the bulk
material (not the individual particles) and can be used as a probe of the contact
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dynamics. As pointed out by Goddard (1990), the experimental evidence (e.g. Richart
1978; Richart et al. 1970) indicates that the power of δ is actually larger than 3/2.
Goddard (1990) suggested that this was due to the fact that the particles actually
interacted across sharp asperities and, using known elastic solutions, proposed a
model that eventually transitions to Hertzian behaviour as the stresses became large
enough to press out the asperities. This type of behaviour appears to be generally
borne out by the direct load cell measurements of Mullier, Tuzun & Walton 1991;
however, these showed a more complicated behaviour, starting with a power smaller
than 3/2, followed by a region where the power was larger than 3/2 and finally
settling into a power equal to 3/2. One can also make a case that linear models
are also adequate as it should always be possible to linearize the stiffness around
a base overlap δ0 which is a function of the local stress levels, and indeed such
ideas are commonly used in sound propagation models. Also Thornton (1997) has
shown that an elastic–plastic particle will exhibit a stiffness that is approximately
linear although the unloading stiffness will be different and larger than the loading
stiffness. (This is similar to the two-spring model first used in simulations by Walton &
Braun 1986.)

There is no simple answer to these questions especially since the behaviour of
contacts undoubtedly varies from material to material, but it should be possible
to achieve some general understanding of the behaviour of nonlinear contacts by
investigating a generic contact with behaviour

F = k0δ
n (6.3)

and an associated stiffness

k = k0δ
n−1. (6.4)

This stiffness is zero until there is some overlap, δ, and increases from then on (notice
that k0, kH and k will all have different dimensions).

What effect will this have on the rheology of the material? The first thing to
notice is that since the stiffness is initially zero and that the expected overlaps are
generally small, the nonlinear models initially produce a less stiff material than their
linear counterparts. If one imagines a shear flow with particles that are continually
in contact, the flow will press particles together resulting in some sort of average
displacement 〈δ〉 that generates the stress response. If one assumes that the force is
distributed over the area of a particle, then

τ =
k0〈δ〉n
d2

. (6.5)

Solving for 〈δ〉/d gives

〈δ〉
d

=

(
τd2−n

k2
0

)1/n

. (6.6)

Note that one expects that the degree of deformation 〈δ〉/d induced by the shear
would be a function largely of the concentration. Note also that all the n, i.e.
all of the signs of nonlinearity, appear on the right-hand side. Thus, one might
expect that (

τd2−n

k2
0

)1/n

(6.7)

is a scaling for the stress that takes the nonlinearity into account. This should then be
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an appropriate dimensionless stress, at least in the elastic–quasi-static regime when
all forces are generated by such overlaps.

The predicted effects of n are then quite interesting. For n = 2, the parameter, and
hence the stresses, are independent of particle diameter. For n > 2 the stress τ will,
at constant values of this parameter, increase with particle diameter and for n < 2,
the stress will decrease with particle diameter. For a linear contact (n = 1) the above
reduces to the elastic scaling, τd/k.

The nonlinearity will also affect the parameter, k/(ρd3γ2), where now k = k0δ
n−1.

In fact one can go through an analysis similar to that used to find equation (5.6)
to obtain

δI

d
=

(
k0

ρd4−nγ2

) 1
1−n
, (6.8)

where δI represents the overlap generated by the inertia of the particle. One might
expect that the right-hand side represents the equivalent of k/(ρd3γ2) for nonlinear
contacts (and reduces to that in the linear case, n = 1) but tests show that this is
not the case – at least not for the large concentrations studied here. The characteristic
overlap δ, which determines the characteristic stiffness k = k0δ

n−1, is a function of
whatever generates the stresses and is the result of quasi-static deformation and
inertial effects. While these two contributions can be separated in a linear system,
the same cannot be done for nonlinear contacts. Consequently, it is not possible to
find a characteristic value of k to use when defining an appropriate equivalent to
k/(ρd3γ2). (The only way to do this would be to estimate the value of δ from the
local stress state to yield an appropriate k, but the resulting equivalent to k/(ρd3γ2)
would then be a dimensionless stress and graphs such as figures 2–9 would be
plots of dimensionless stress against dimensionless stress.) However, the conclusions
drawn in the last section are still valid: that the likely values of k/(ρd3γ2) are
large, and at large concentrations, quasi-static behaviour (independent of k/(ρd3γ2))
can be anticipated. Consequently, it is possible to perform tests of the nonlinear
effects simply at large values of k/(ρd3γ2), without requiring precise control over the
exact value of k/(ρd3γ2). (Such a region was determined by first running at small
values of γ, and then estimating k for the stress state, to check that the effective
k/(ρd3γ2) was larger than 106.) The analysis around equation (6.7) assumes that the
material is reacting elastically to the shear deformation. One would then expect this
scaling to hold when the system is behaving elastically and break down at smaller
concentrations when the flow transitions to inertial behaviour. A plot of the scaled
yy stress component is shown in figure 11. At each concentration, the particle size
was varied by a factor of 4 and the stiffness constant k0 was varied by a factor of
10. This scaling collapses the data at the largest concentrations, but very quickly
fails at concentrations below about ν = 0.59, where the data scatter with both
the nonlinearity factor n and with particle size, d. This is to be expected as the
linear stiffness data anticipate inertial behaviour below ν = 0.59. Nonetheless (6.7)
does represent a scaling for nonlinear contacts throughout the elastic–quasi-static
regime.

7. Conclusions
This paper investigates the high density limit of granular flow in which the elastic

properties of the particles become important in determining the overall rheology. The
elastic properties make their appearance through the contact stiffness k, which is the
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Figure 11. A check on the scaling for the nonlinear contact models. For this figure the particle
surface friction was held fixed at µ = 0.5. Note that the scaling holds for large concentrations of
ν > 0.59 which previously delineated the elastic region for a linear stiffness.

property that most directly governs the elastic properties of the bulk material. Note
that k is not solely a function of the elastic properties of the solid material that
makes up the particles, but also depends strongly on the geometry of the interparticle
contacts. Hence one cannot directly relate the elastic properties of the bulk granular
material to the properties of the solid material of which the individual granules are
composed.

At large concentrations, the stresses are generated by elastic deformations of
the bulk material and as such should be related to the bulk elastic properties.
A convenient dimensionless stress is then τd/k, which scales the stress with the
interparticle stiffness k that governs the bulk elastic properties. (This parameter can
be interpreted as the ratio of the length of the contact deformation to the particle
diameter.) Dimensional analysis also provides an appropriate dimensionless parameter
k/(ρd3γ2), that scales the shear rate γ with the interparticle stiffness, k. (This parameter
may be interpreted as the ratio of the that portion of the contact deformation that
is inertially induced to the particle diameter.) There are two regimes in this limit.
In the ‘elastic–inertial’ regime, the stresses scale elastically, but also increase with
shear rate; this is encountered at small k/(ρd3γ2). In the ‘elastic–quasi-static’ regime,
the stresses again scale elastically but are strain-rate independent; this corresponds
to large k/(ρd3γ2). Magnitude estimates of k/(ρd3γ2) for common materials indicate
that the elastic–inertial regime is only reachable for very soft materials or very
large particles and is not accessible to many standard granular solids such as 1 mm
sand.

It has long been known that the load applied to a granular material is not
evenly distributed among the constituent particles. Instead it is carried mostly along
‘force chains’, highly loaded networks of particles that span the system, while many
particles experience little or none of the applied force. These force chains determine
the elastic response of the bulk material. The fact that the stresses scale with the
elastic properties of the bulk material as τd/k indicates that they are generated
by particle deformation within the force chains. As the material shears, these force
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chains are formed and rotate and eventually break under the applied loads and the
effects of shear, a process observed by Howell, Behringer & Veje (1999a, b). This is
supported by observations that the stresses fluctuate and that the normal stresses are
strongly affected by the particle surface friction, µ. Large surface friction leads to
stronger force chains and consequently larger stresses can be generated before the
chain breaks.

Note that the effect of the surface friction µ may only be important for the
spherical particles studied here. Non-spherical particles will tend to lock together and
form strong internal structures by virtue of their shape alone. In fact one would
expect this to be more important than the surface friction in determining the force
chain strength for non-spherical particles.

As the concentrations are reduced the material can rapidly transition from ‘elastic–
quasi-static’ strain-rate-independent behaviour to a fully inertial behaviour where
the stresses are independent of the elastic properties. At large k/(ρd3γ2), where
the strain rates and the corresponding inertial stresses are small, such a transition
can cause a dramatic change in the stresses. In that regime, a 2% drop in con-
centration is observed to cause nearly a three orders of magnitude change in the
stresses. This suggests a percolation threshold for the force chains that support
the material when it behaves quasi-statically. Furthermore the threshold appears
to be strongly dependent on friction. At µ = 0.1, elastic–quasi-static behaviour
is observed only above ν = 0.61 but for µ = 1.0 the threshold has dropped to
ν = 0.58. These huge stress changes, accompanying such small changes in concen-
tration, indicate that granular materials near these limiting concentrations are prone
to instabilities; natural fluctuations in the concentration can cause the flow to locally
transition between flow regimes with huge changes in the stress. Such instabilities
have been reported in the shear cell studies of Savage & Sayed (1984), Hanes &
Inman (1985) and Wang & Campbell (1992) and cause severe vibration of the test
cell.

It was also noted that a transition from pure inertial to elastic–inertial behaviour
can be observed for small values of k/(ρd3γ2), at surprisingly small concentrations. In
these studies such a transition was observed at concentrations as small as ν = 0.45. As
small k/(ρd3γ2) implies large shear rates, this indicates that the large shear rate can
force the formation of force chains. This can be understood through an analysis of the
parameter k/(ρd3γ2), that indicates that it is proportional to the square of the ratio of
the inverse shear rate to the binary contact time. In other words, it may be thought of
as the ratio of the time between collisions (∼ 1/γ), which forces particles together, to
the binary collision time Tbc, which controls the rate at which the interparticle elastic
forces can separate the particles. Thus, for small values of k/(ρd3γ2), particles are
driven together at rates close to the rate at which they are elastically pushed apart,
allowing force chains to form at remarkably small concentrations.

Previously it was generally understood that quasi-static behaviour would be ob-
served at small shear rates and inertial behaviour at large shear rates. These results
show this not to be the case. At fixed concentration, there is no path between quasi-
static and rapid behaviour. Changing the shear rate with all other properties fixed
caused transitions between elastic–quasi-static and elastic–inertial or between inertial
and elastic–inertial. Only varying the concentration, could force a transition between
elastic–quasi-static and inertial behaviours.

This work was largely motivated by previous studies of landslides, hopper flows
and the ‘phase-change’ between solid and fluid behaviour. These collectively in-
dicated that the stress ratio τxy/τyy increased with the shear rate γ, a behaviour
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that is unexpected for standard quasi-static and rapid flow models. These sim-
ulations demonstrated that when in the elastic–inertial regime, the stress ratio
τxy/τyy decreases with k/(ρd3γ2) and thus does indeed increase with the shear
rate.

These results should serve as a warning to users of soft-particle simulations. Because
it speeds the execution of the simulation, there is a tendency to use unrealistically soft
particles. Generally it has been argued that as long as the particle overlaps are small,
this should not affect the flow. However, these studies put another restriction on
the particle stiffness, as reducing k reduces k/(ρd3γ2) which can cause an unrealistic
change from elastic–quasi-static to elastic–inertial behaviour.

Finally, nonlinear contact models for which the interparticle force varies as k0δ
n

were investigated. Inertial effects are not easy to scale in this case, but in the elastic–
quasi-static regime, the nonlinear effects could be taken into account by scaling the
stresses as (τd2−n/k0)

1/n.
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Administration under grant number NAG3-2358. Special thanks to Sasha Potapov
for his help with the simulation development and to Gustavo Joseph for his help with
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